Abstract
This study investigated the adaptive fault-tolerant control (FTC) for a flexible variable structure spacecraft in the presence of external disturbance, multiple actuator faults, and saturation. The attitude system model of a variable structure spacecraft and actuator fault model are first given. A sliding mode-based fault detection observer and a radial basis function-based fault estimation observer were designed to detect the time of actuator fault occurrence and estimate the amplitude of an unknown fault, respectively. Then, the adaptive FTC with variable structure harmonic functions was proposed to automatically repair multiple actuator faults, which first guaranteed that the state trajectory of attitude systems without actuator saturation converges to a neighborhood of the origin. Then, another improved adaptive FTC scheme was further proposed in the actuator saturation constraint case, ensuring that all the closed-loop signals are finite-time convergence. Finally, simulation results are given to illustrate the effectiveness of the proposed method.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献