An analytical study of sound transmission loss of functionally graded sandwich cylindrical nanoshell integrated with piezoelectric layers

Author:

Thongchom Chanachai,Saffari Pouyan Roodgar,Refahati Nima,Saffari Peyman Roudgar,Pourbashash Hossein,Sirimontree Sayan,Keawsawasvong Suraparb

Abstract

AbstractThe multidisciplinary nature of piezoelectric (PZ) structures necessitates precise and efficient methods to express their behavior under different conditions. This article extends the general usage of PZ materials by introducing acoustic and fluid loading effects in a way that an unfilled multilayer cylindrical nanoshell with a functionally graded (FG) material core and PZ layers is subjected to preliminary external electric load, acoustic waves and external flow motion. As the properties of a functionally graded material changes along the shell thickness, a power law model is assumed to be governing such variations of desired characteristics. Evidently, this system includes different types of couplings and a comprehensive approach is required to describe the structural response. To this aim, the first-order shear deformation theory (FSDT) is used to define different displacement components. Next, the coupled size-dependent vibroacoustic equations are derived based on in conjunction with nonlocal strain gradient theory (NSGT) with the aid of Hamilton’s variational principle and fluid/structure compatibility conditions. NSGT is complemented with hardening and softening material effects which can greatly enhance the precision of results. It is expected to use the findings of this paper in the optimization of similar systems by selecting suitable FG index, incident angle of sound waves, flow Mach number, nonlocal and strain gradient parameters, starting electric potential and geometric features. One of the important findings of this study is that increasing the electric voltage can obtain better sound insulation at small frequencies, specially prior to the ring frequency.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3