Pavement Distress Detection Using Three-Dimension Ground Penetrating Radar and Deep Learning

Author:

Yang Jiangang,Ruan KaiguoORCID,Gao Jie,Yang Shenggang,Zhang Lichao

Abstract

Three-dimensional ground penetrating radar (3D GPR) is a non-destructive examination technology for pavement distress detection, for which its horizontal plane images provide a unique perspective for the task. However, a 3D GPR collects thousands of horizontal plane images per kilometer of the investigated pavement. The existing detection methods using GPR images are time-consuming and risky for subjective judgment. To solve the problem, this study used deep learning methods and 3D GPR horizontal plane images to detect pavement structural distress, including cracks, repairs, voids, poor interlayer bonding, and mixture segregation. In this study, two deep learning methods, called CP-YOLOX and SViT, were used to achieve the aim. A dataset for anomalous waveform localization (3688 images) was first created by pre-processing 3D-GPR horizontal plane images. A CP-YOLOX model was then trained to localize anomalous waveforms. Five SViT models with different numbers of encoders were adopted to perform the classification of anomalous waveforms using the localization results from the CP-YOLOX model. The numerical experiment results showed that 3D GPR horizontal plane images have the potential to be an assistant for pavement structural distress detection. The CP-YOLOX model achieved 87.71% precision, 80.64% mAP, and 33.57 sheets/s detection speed in locating anomalous waveforms. The optimal SViT achieved 63.63%, 68.12%, and 75.57% classification accuracies for the 5-category, 4-category, and 3-category datasets, respectively. The proposed models outperformed other deep learning methods on distress detection using 3D GPR horizontal plane images. In the future, more radar images should be collected to improve the accuracy of SViT.

Funder

Natural Science Foundation of Jiangxi Province of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3