Abstract
To solve the problem of data accuracy degradation of vehicle GNSS/INS integrated navigation systems when the GNSS signal is unavailable or there is a GNSS outage, this paper improves the existing GNSS/INS integration methodology for land vehicle navigation based on the AI method. First, a GNSS/INS integration methodology for land vehicle navigation based on position update architecture (PUA) using LightGBM regression for predicting the position of a vehicle during a GNSS outage is presented. It uses LightGBM to model the relationship between INS data and vehicle position changes. On-board INS and GNSS data are collected when the GNSS signal is available and are used to train the PUA-LightGBM model; in the event of a GNSS outage, INS data are used as the input to the PUA-LightGBM to predict the change in vehicle position. Second, a vehicle navigation data acquisition system was designed for model validation. This included a self-developed GNSS/INS integrated navigation system and a Novatel pwrpak7-e1 GNSS/INS integrated navigation system for data acquisition on six road segments. Finally, the collected data were used for machine learning training of the PUA-LightGBM model and the existing PUA-RandomForest model. As a result, the PUA-LightGBM predicts the vehicle position with less error in the event of a GNSS outage and takes less time to train. It was also demonstrated that by allowing the model to be dynamically trained or updated while the vehicle is moving the PUA-LightGBM could adapt perfectly to the predictions of vehicle position changes in different complex road segments.
Funder
Gansu Provincial Science and Technology Major Project of China
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献