Improving the Accuracy of Oncology Diagnosis: A Machine Learning-Based Approach to Cancer Prediction

Author:

Cabanillas-Carbonell MichaelORCID,Zapata-Paulini JoselynORCID

Abstract

Cancer ranks among the most lethal illnesses worldwide, and predicting its onset can be a crucial factor in enhancing people’s quality of life by taking preventive measures to improve treatment and survival. This study conducted comparative research to determine the machine learning model with the highest accuracy for tumor type classification, distinguishing between malignant (cancer) and benign tumors. The models evaluated include decision tree (DT), naive bayes (NB), extra trees classifier (ETM), random forest (RF), K-means clustering (K-means), logistic regression (LR), adaptive boosting (AdaBoost), gradient boosting (GB), light gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost) to identify the one with the best accuracy. The models were trained using a dataset of 569 records and a total of 32 variables, containing patient information and tumor characteristics. The study was structured into sections, such as related studies, descriptions of the models, case study development, results, discussion, and conclusions. The models’ performance was evaluated based on metrics of precision, sensitivity, accuracy, and F1 score. Following the training, the results positioned the XGBoost model as having the best performance, achieving 98% precision, accuracy, sensitivity, and F1 score.

Publisher

International Association of Online Engineering (IAOE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3