Effects of Propanol on the Performance and Emissions of a Dual-Fuel Industrial Diesel Engine

Author:

Jamrozik ArkadiuszORCID,Tutak WojciechORCID,Grab-Rogaliński Karol

Abstract

The search for alternative fuels that can limit the use of traditional fossil fuels to power internal combustion engines is one of the main tasks faced by both the modern automotive industry and the modern energy industry. This paper presents experimental tests of a compression ignition engine, in which the conventional fuel, i.e., diesel, was partially replaced with propyl alcohol, i.e., a renewable biofuel. Studies on the co-combustion of diesel fuel with propanol were carried out, in which the energy share of alcohol varied from 0 to 65%. The research showed that an increase in the proportion of propanol, up to 30%, resulted in a significant increase in the rate of heat release and the rate of pressure increase in the cylinder of a compression-ignition engine. Increasing the alcohol content to 65% resulted in an increase in the ignition delay time and significantly shortened the duration of combustion. During the combustion of diesel fuel with a 50% propanol share, the engine was characterized by maximum efficiency, higher than diesel fuel combustion by 5.5%. The addition of propanol caused a slight deterioration of the combustion stability determined by the coefficient of variation for IMEP. The study of engine exhaust emissions has shown that the combustion of diesel fuel with a small proportion of propanol, up to 30%, causes an increase in nitrogen oxide emissions, while up to 50% contributes to a decrease in HC emissions. The increased share of alcohol contributed to a significant decrease in the emissions of both carbon monoxide and carbon dioxide, and caused a significant reduction in the concentration of soot in the exhaust of the compression-ignition engine.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3