IHSSAO: An Improved Hybrid Salp Swarm Algorithm and Aquila Optimizer for UAV Path Planning in Complex Terrain

Author:

Yao JinyanORCID,Sha Yongbai,Chen Yanli,Zhang Guoqing,Hu XinyuORCID,Bai Guiqiang,Liu Jun

Abstract

In this paper, we propose a modified hybrid Salp Swarm Algorithm (SSA) and Aquila Optimizer (AO) named IHSSAO for UAV path planning in complex terrain. The primary logic of the proposed IHSSAO is to enhance the performance of AO by introducing the leader mechanism of SSA, tent chaotic map, and pinhole imaging opposition-based learning strategy. Firstly, the tent chaotic map is utilized to substitute the randomly generated initial population in the original algorithm to increase the diversity of the initial individuals. Secondly, we integrate the leader mechanism of SSA into the position update formulation of the basic AO, which enables the search individuals to fully utilize the optimal solution information and enhances the global search capability of AO. Thirdly, we introduce the pinhole imaging opposition-based learning in the proposed IHSSAO to enhance the capability to escape from the local optimization. To verify the effectiveness of the proposed IHSSAO algorithm, we tested it against SSA, AO, and five other advanced meta-heuristic algorithms on 23 classical benchmark functions and 17 IEEE CEC2017 test functions. The experimental results indicate that the proposed IHSSAO is superior to the other seven algorithms in most cases. Eventually, we applied the IHSSAO, SSA, and AO to solve the UAV path planning problem. The experimental results verify that the IHSSAO is superior to the basic SSA and AO for solving the UAV path planning problem in complex terrain.

Funder

Key Research and Development Program of Jilin Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3