Intelligent Optimization Algorithm-Based Path Planning for a Mobile Robot

Author:

Song Qisong1ORCID,Li Shaobo12ORCID,Yang Jing12,Bai Qiang1,Hu Jianjun3,Zhang Xingxing2,Zhang Ansi12

Affiliation:

1. School of Mechanical Engineering, Guizhou University, Guiyang 550025, Guizhou, China

2. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China

3. School of University South Carolina, Department of Computer Science and Engineering, Columbia, SC 29201, USA

Abstract

The purpose of mobile robot path planning is to produce the optimal safe path. However, mobile robots have poor real-time obstacle avoidance in local path planning and longer paths in global path planning. In order to improve the accuracy of real-time obstacle avoidance prediction of local path planning, shorten the path length of global path planning, reduce the path planning time, and then obtain a better safe path, we propose a real-time obstacle avoidance decision model based on machine learning (ML) algorithms, an improved smooth rapidly exploring random tree (S-RRT) algorithm, and an improved hybrid genetic algorithm-ant colony optimization (HGA-ACO). Firstly, in local path planning, the machine learning algorithms are used to train the datasets, the real-time obstacle avoidance decision model is established, and cross validation is performed. Secondly, in global path planning, the greedy algorithm idea and B-spline curve are introduced into the RRT algorithm, redundant nodes are removed, and the reverse iteration is performed to generate a smooth path. Then, in path planning, the fitness function and genetic operation method of genetic algorithm are optimized, the pheromone update strategy and deadlock elimination strategy of ant colony algorithm are optimized, and the genetic-ant colony fusion strategy is used to fuse the two algorithms. Finally, the optimized path planning algorithm is used for simulation experiment. Comparative simulation experiments show that the random forest has the highest real-time obstacle avoidance prediction accuracy in local path planning, and the S-RRT algorithm can effectively shorten the total path length generated by the RRT algorithm in global path planning. The HGA-ACO algorithm can reduce the iteration number reasonably, reduce the search time effectively, and obtain the optimal solution in path planning.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3