A Sensing-Based Visualization Method for Representing Pressure Distribution in a Multi-Zone Building by Floor

Author:

Jing Jiajun1,Lee Dong-Seok2ORCID,Joe Jaewan3,Kim Eui-Jong3ORCID,Cho Young-Hum4,Jo Jae-Hun3

Affiliation:

1. Department of Architectural Engineering, Inha University, Incheon 22212, Republic of Korea

2. Department of Architectural Engineering, Keimyung University, Daegu 42601, Republic of Korea

3. Division of Architecture, Inha University, Incheon 22212, Republic of Korea

4. School of Architecture, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

Airflow in a multi-zone building can be a major cause of pollutant transfer, excessive energy consumption, and occupants discomfort. The key to monitoring airflows and mitigating related problems is to obtain a comprehensive understanding of pressure relationships within the buildings. This study proposes a visualization method for representing pressure distribution within a multi-zone building by using a novel pressure-sensing system. The system consists of a Master device and a couple of Slave devices that are connected with each other by a wireless sensor network. A 4-story office building and a 49-story residential building were installed with the system to detect pressure variations. The spatial and numerical mapping relationships of each zone were further determined through grid-forming and coordinate-establishing processes for the building floor plan. Lastly, 2D and 3D visualized pressure mappings of each floor were generated, illustrating the pressure difference and spatial relationship between adjacent zones. It is expected that the pressure mappings derived from this study will allow building operators to intuitively perceive the pressure variations and the spatial layouts of the zones. These mappings also make it possible for operators to diagnose the differences in pressure conditions between adjacent zones and plan a control scheme for the HVAC system more efficiently.

Funder

National Research Foundation of Korea (NRF) grant funded by the government of the Republic of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3