Airtightness Assessment under Several Low-Pressure Differences in Non-Residential Buildings

Author:

Shim Chanhyung1ORCID,Hong Goopyo1

Affiliation:

1. Department of Architectural Engineering, College of Engineering, Kangwon National University, Samcheok 25913, Republic of Korea

Abstract

The thermal performance of building envelopes is significantly affected by building insulation and airtightness. However, most studies have focused on improving thermal performance in building envelopes, while few studies on improving airtightness in buildings have been conducted. The present study measured airtightness and infiltration in non-residential buildings using fan pressurization and tracer gas methods. By analyzing the results obtained from both methods, the distribution of the correlation factors was identified, which can be used for the air leakage rates obtained from the blower door test to estimate the infiltration rates under natural airflow conditions. Since it is difficult to get the values of ACH50 through the blower door test in buildings of large volume or where large air leakages occur, the study proposed a method to convert the values of airtightness under several low-pressure differences of 20 Pa, 25 Pa, 30 Pa and 35 Pa into ACH50 using conversion coefficient. By dividing the air leakage rate under 20 Pa pressure difference by the conversion coefficient of 0.60, the values of ACH50 can be estimated. Results converted to ACH50 using conversion coefficient for various pressure differences of 20 Pa, 25 Pa, 30 Pa, and 35 Pa showed an error of 0.1–4.4%, respectively, compared to actual ACH50 measurement results.

Funder

Kangwon National University

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3