Influence of Synthesis Gas Components on Hydrogen Storage Properties of Sodium Aluminum Hexahydride

Author:

Sun Tai,Peinecke Kateryna,Urbanczyk Robert,Felderhoff Michael

Abstract

A systematic study of different ratios of CO, CO2, N2 gas components on the hydrogen storage properties of the Na3AlH6 complex hydride with 4 mol% TiCl3, 8 mol% aluminum and 8 mol% activated carbon is presented in this paper. The different concentrations of CO and CO2 in H2 and CO, CO2, N2 in H2 mixture were investigated. Both CO and CO2 gas react with the complex hydride forming Al oxy-compounds, NaOH and Na2CO3 that consequently cause serious decline in hydrogen storage capacity. These reactions lead to irreversible damage of complex hydride under the current experimental condition. Thus, after 10 cycles with 0.1 vol % CO + 99.9 vol %H2 and 1 vol % CO + 99 vol %H2, the dehydrogenation storage capacity of the composite material decreased by 17.2% and 57.3%, respectively. In the case of investigation of 10 cycles with 1 vol % CO2 + 99 vol % H2 gas mixture, the capacity degradation was 53.5%. After 2 cycles with 10 vol % CO +90 vol % H2, full degradation was observed, whereas after 6 cycles with 10 vol % CO2 + 90 vol % H2, degradation of 86.8% was measured. While testing with the gas mixture of 1.5 vol % CO + 10 vol % CO2 + 27 vol % H2 + 61.5 vol % N2, the degradation of 94% after 6 cycles was shown. According to these results, it must be concluded that complex aluminum hydrides cannot be used for the absorption of hydrogen from syngas mixtures without thorough purification.

Funder

MOST Scientific Project

Publisher

MDPI AG

Subject

Urology,Nephrology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3