The Effect of Liquid Hydrogen Tank Size on Self-Pressurization and Constant-Pressure Venting

Author:

Matveev Konstantin I.1ORCID,Leachman Jacob W.1

Affiliation:

1. Hydrogen Properties for Energy Research (HYPER) Center, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA

Abstract

Hydrogen represents a promising renewable fuel, and its broad application can lead to drastic reductions in greenhouse gas emissions. Keeping hydrogen in liquid form helps achieve high energy density, but also requires cryogenic conditions for storage as hydrogen evaporates at temperatures of about 20 K, which can lead to a large pressure build-up in the tank. This paper addresses the unsteady thermal modeling of cryogenic tanks with liquid hydrogen. Considering the liquid and vapor phases in the tank as two nodes with averaged properties, a lumped-element method of low computational cost is developed and used for simulating two regimes: self-pressurization (also known as autogenous pressurization, or pressure build-up in the closed tank due to external heat leaks) and constant-pressure venting (when some hydrogen is let out of the tank to maintain pressure at a fixed level). The model compares favorably (within several percent for pressure) to experimental observations for autogenous pressurization in a NASA liquid hydrogen tank. The two processes of interest in this study are numerically investigated in tanks of similar shapes but different sizes ranging from about 2 to 1200 m3. Pressure and temperature growth rates are characterized in closed tanks, where the interfacial mass transfer manifests initial condensation followed by more pronounced evaporation. In tanks where pressure is kept fixed by venting some hydrogen from the vapor domain of the tank, the initial venting rate significantly exceeds evaporation rate, but after a settling period, magnitudes of both rates approach each other and continue evolving at a slower pace. The largest tank demonstrates a six-times-lower pressure rise than the smallest tank over a 100 h period. The relative boil-off losses in continuously vented tanks are found to be approximately proportional to the inverse of the tank diameter, thus generally following simple Galilean scaling with a few percent deviation due to scale effects. The model developed in this work is flexible for analyzing a variety of processes in liquid hydrogen storage systems, raising efficiencies, which is critically important for a future economy based on renewable energy.

Funder

U.S. National Science Foundation

Publisher

MDPI AG

Subject

Urology,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3