Modelling of Liquid Hydrogen Boil-Off

Author:

Al Ghafri Saif Z. S.,Swanger Adam,Jusko VincentORCID,Siahvashi Arman,Perez Fernando,Johns Michael L.,May Eric F.ORCID

Abstract

A model has been developed and implemented in the software package BoilFAST that allows for reliable calculations of the self-pressurization and boil-off losses for liquid hydrogen in different tank geometries and thermal insulation systems. The model accounts for the heat transfer from the vapor to the liquid phase, incorporates realistic heat transfer mechanisms, and uses reference equations of state to calculate thermodynamic properties. The model is validated by testing against a variety of scenarios using multiple sets of industrially relevant data for liquid hydrogen (LH2), including self-pressurization and densification data obtained from an LH2 storage tank at NASA’s Kennedy Space Centre. The model exhibits excellent agreement with experimental and industrial data across a range of simulated conditions, including zero boil-off in microgravity environments, self-pressurization of a stored mass of LH2, and boil-off from a previously pressurized tank as it is being relieved of vapor.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3