Author:
Fan Linjie,Bi Jinshun,Xi Kai,Majumdar Sandip,Li Bo
Abstract
This work investigates the behavior of fully depleted silicon-on-insulator (FD-SOI) Hall sensors with an emphasis on their physical parameters, namely the aspect ratio, doping concentration, and thicknesses. Via 3D-technology computer aided design (TCAD) simulations with a galvanomagnetic transport model, the performances of the Hall voltage, sensitivity, efficiency, offset voltage, and temperature characteristics are evaluated. The optimal structure of the sensor in the simulation has a sensitivity of 86.5 mV/T and an efficiency of 218.9 V/WT at the bias voltage of 5 V. In addition, the effects of bias, such as the gate voltage and substrate voltage, on performance are also simulated and analyzed. Optimal structure and bias design rules are proposed, as are some adjustable trade-offs that can be chosen by designers to meet their own Hall sensor requirements.
Funder
the Youth Innovation Promotion Association CAS
the National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献