Affiliation:
1. Navigation College, Jimei University, Xiamen 361021, China
Abstract
The intelligent perception ability of the close-range navigation environment is the basis of autonomous decision-making and control of unmanned ships. In order to realize real-time perception of the close-range environment of unmanned ships, an enhanced attention mechanism YOLOv4 (EA-YOLOv4) algorithm is proposed. First of all, on the basis of YOLOv4, the convolutional block attention module (CBAM) is used to search for features in channel and space dimensions, respectively, to improve the model’s feature perception of ship targets. Then, the improved-efficient intersection over union (EIoU) loss function is used to replace the complete intersection over union (CIoU) loss function of the YOLOv4 algorithm to improve the algorithm’s perception of ships of different sizes. Finally, in the post-processing of algorithm prediction, soft non-maximum suppression (Soft-NMS) is used to replace the non-maximum suppression (NMS) of YOLOv4 to reduce the missed detection of overlapping ships without affecting the efficiency. The proposed method is verified on the large data set SeaShips, and the average accuracy rate of mAP0.5–0.95 reaches 72.5%, which is 10.7% higher than the original network YOLOv4, and the FPS is 38 frames/s, which effectively improves the ship detection accuracy while ensuring real-time performance.
Funder
National Natural Science Foundation of China
Fuzhou-Xiamen-Quanzhou Independent Innovation Region Cooperated Special Foundation
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献