CSD-YOLO: A Ship Detection Algorithm Based on a Deformable Large Kernel Attention Mechanism

Author:

Wang Tao1ORCID,Zhang Han2,Jiang Dan1

Affiliation:

1. School of Shipping and Marine Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2. School of Tourism and Media, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

Ship detection and identification play pivotal roles in ensuring navigation safety and facilitating efficient maritime traffic management. Aiming at ship detection in complex environments, which often faces problems such as the dense occlusion of ship targets, low detection accuracy, and variable environmental conditions, in this paper, we propose a ship detection algorithm CSD-YOLO (Context guided block module, Slim-neck, Deformable large kernel attention-You Only Look Once) based on the deformable large kernel attention (D-LKA) mechanism, which was improved based on YOLOv8 to enhance its performance. This approach integrates several innovations to bolster its performance. Initially, the utilization of the Context Guided Block module (CG block) enhanced the c2f module of the backbone network, thereby augmenting the feature extraction capabilities and enabling a more precise capture of the key image information. Subsequently, the introduction of a novel neck architecture and the incorporation of the slim-neck module facilitated more effective feature fusion, thereby enhancing both the accuracy and efficiency of detection. Furthermore, the algorithm incorporates a D-LKA mechanism to dynamically adjust the convolution kernel shape and size, thereby enhancing the model’s adaptability to varying ship target shapes and sizes. To address data scarcity in complex marine environments, the experiments utilized a fused dataset comprising the SeaShips dataset and a proprietary dataset. The experimental results demonstrate that the CSD-YOLO algorithm outperformed the YOLOv8n algorithm across all model evaluation metrics. Specifically, the precision rate (precision) was 91.5%, the recall rate (recall) was 89.5%, and the mean accuracy (mAP) was 91.5%. Compared to the benchmark algorithm, the Recall was improved by 0.7% and the mAP was improved by 0.4%. These results indicate that the CSD-YOLO algorithm can effectively meet the requirements for ship target recognition and tracking in complex marine environments.

Funder

Ministry of Education, Industry-University Cooperation Collaborative Education Project

Xiamen Municipal Natural Science Foundation Upper-level Project

Chongqing Municipal Postgraduate Student Supervisory Team Construction Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3