Numerical Analysis of Flow Characteristics in Impeller-Guide Vane Hydraulic Coupling Zone of an Axial-Flow Pump as Turbine Device

Author:

Yang Fan12ORCID,Li Zhongbin1,Lv Yuting1,Li Jindong3,Zhou Guangxin4,Nasr Ahmed5ORCID

Affiliation:

1. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

2. Jiangxi Research Center on Hydraulic Structures, Jiangxi Academy of Water Science and Engineering, Nanchang 330029, China

3. Water Resources Research Institute of Jiangsu Province, Nanjing 210017, China

4. Jiangsu Aerospace Hydraulic Equipments Co., Ltd., Yangzhou 225600, China

5. College of Civil Engineering, Tongji University, Shanghai 200092, China

Abstract

An axial-flow pump as a turbine (PAT), as compared to the conventional Francis turbine, has the advantages of not being restricted by the terrain and having lower cost to reverse the pump as a turbine for power generation. When an axial-flow pump is reversed as a turbine, the internal flow pattern is more complicated than when in the pump mode, which can cause instability in the whole system and result in degradation of the hydraulic performance and structural vibration. The impeller and guide vane are the core of the axial-flow PAT unit. This research compares the experimental and numerical simulation results in order to verify the energy performance and pressure pulsation signal of the axial-flow PAT. The unsteady flow regime, fluid force, and pressure pulsation characteristics of the impeller-guide vane hydraulic coupling zone are analyzed in detail. The findings demonstrate that both the dominant frequency of the fluid force pulsation signal and the flow field pressure pulsation signal appear at 3 times of the rotation frequency. The blade passing frequency (BPF) of the impeller is the dominant frequency, and other frequency components are also dominated by the harmonic frequency of the BPF. The impeller and guide vane are primarily subject to radial fluid force. Under partial working conditions, the pressure pulsation intensity in the flow field greatly increases, and the pressure pulsation amplitude at the guide vane outlet and impeller outlet appears to be more sensitive to the flow rate change.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Technology Project of the Water Resources Department of Jiangsu Province

Science and Technology Plan Project of Yangzhou City

Open Project of Jiangxi Research Center on Hydraulic Structures

Jiangsu Hydraulic Research Institute

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3