Influence Analysis of Runner Inlet Diameter of Hydraulic Turbine in Turbine Mode with Ultra-Low Specific Speed

Author:

Chen Jinbao1,Zheng Yang1ORCID,Zhang Lihong2,Chen Xiaoyu3,Liu Dong2ORCID,Xiao Zhihuai1

Affiliation:

1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

2. College of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

3. Nuclear Power Plants and Renewable Energy Sources Department, Ural Federal University, 620002 Yekaterinburg, Russia

Abstract

The hydraulic turbine in turbine mode (HTTM) with an ultra-low specific speed (HTTM-ULSS) has the advantages of a simplified structure, high efficiency, and good stability and has great application value in the industry. However, the influence of the runner inlet diameter (D1) on the performance of HTTM-ULSS has not yet been fully studied. Therefore, the three-dimensional models of Francis runners were established in the ultra-low specific speed range by examining D1 = 0.49 m, 0.5 m, and 0.51 m, and the two-stage hydraulic turbine models were constructed with flow passage components. Then, internal flow and energy characteristics were calculated using Fluent 16.0 software. Further, the influence of D1 on HTTM performance was studied by comparing numerical simulation results. The results show that the water head of the HTTM-ULSS can reach 540.87 m when D1 = 0.51 m, showing its powerful ability to recover the pressure energy in high-pressure water. Moreover, the head and efficiency are closely related to D1; when D1 increases, the circulation at the runner inlet increases, resulting in an enhancement in the ability to recover the water head and decreases in efficiency and in the operating range of the high-efficiency zone; with D1 increasing, the flow pattern inside the runner becomes better, but the high-pressure area of the blade increases. When selecting the D1, attention should not only be paid to the ability to recover the water head but also to the pressure of the runner blades and the internal water flow pattern.

Funder

Hubei Provincial Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3