Author:
Jiang Shuaifei,Chen Xiaoyi,Gao Ying,Cui Ying,Kong Lisheng,Zhao Jian,Zhang Jinfeng
Abstract
Prince Rupprecht’s larch (Larix principis-rupprechtii Mayr) is a native conifer in North China with great economic and ecological values. Somatic embryogenesis (SE) is a powerful tool for the mass clonal propagation in plants. In this study, we described a high-efficiency SE system via indirect pathways and investigated the effect of genotype, culture conditions and phytohormones on SE. Immature zygotic embryos (IZEs) of L. principis-rupprechtii Mayr were used as explant materials. In the induction stage, embryogenic tissues (ETs) were induced on mLV medium supplemented with 2.0 mg L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg L−1 6-benzylaminopurine (6-BA). The initiation frequencies showed significant differences (p < 0.05) among 20 genotypes of open-pollinated mother trees with the highest induction frequency reaching 30%. For tissue proliferation, proliferation in liquid medium was more efficient compared with proliferation in semi-solid medium, providing a multiplication rate of 3.12 in an 8-day subculture period. As a necessary exogenous plant growth regulator (PGR) for somatic embryo maturation in conifers, abscisic acid (ABA) was optimized at 16 mg L−1 in this system. Next, an orthogonal test on osmotic pressure factors showed 50 g L−1 sucrose, 7 g L−1 phytagel and 75 g L−1 polyethylene glycol (PEG) was the optimal combination for somatic embryo maturation in L. principis-rupprechtii Mayr. Moreover, the dispersion culture method provided a more efficient somatic embryo maturation, up to 545 per gram of fresh weight (FW). Finally, 2 g L−1 of active charcoal (AC) was found to increase the somatic embryo germination rate to 63.46%. The improved protocol of SE will serve as a foundation for establishing mass propagation and genetic transformation of L. principis-rupprechtii Mayr.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
State Key Laboratory of Tree Genetics and Breeding
Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key R&D Program of Heibei Province, China
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献