Long-Term Successional Subculture Dynamics and Their Effects on the Proliferation Efficiency, Embryogenic Potential, and Genetic Stability of Embryogenic Tissues in Larix principis-rupprechtii Mayr

Author:

Chen Xiaoyi1,Liu Chengbi1,Yuan Deshui2,Wang Xiuqi1,Zhao Huanhuan1,Zhang Luyao1,Kong Lisheng3,Zhang Jinfeng1,Zhao Jian1

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China

2. National Key Seed Base of Larch, Hebei Academy of Forestry Science, Shijiazhuang 050061, China

3. Centre for Forest Biology, Department of Biology, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8W 3N5, Canada

Abstract

Larix principis-rupprechtii Mayr, a coniferous species indigenous to Northern China, possesses significant ecological and economic value. Somatic embryogenesis offers a pathway with significant potential for large-scale propagation, long-term germplasm conservation, and genetic transformation in L. principis-rupprechtii Mayr. However, it remains unclear whether significant variations occur in embryogenic tissues during long-term successive subculturing, which could impact the productivity of somatic embryos. This is a pivotal concern that lacks comprehensive understanding. In this study, three embryogenic cell lines were used to explore the dynamics and relationships among proliferation rate, pre-treatment proliferation rate, and embryogenic capabilities across a series of 32 subculturing cycles. Proliferation rate, pre-treatment proliferation rate, and somatic embryo maturation rate showed no significant correlation with subculturing cycles. However, there was a positive correlation between subculturing cycles and pre-treatment proliferation rate and a negative correlation with somatic embryo maturation rate in the BFU1 cell line. In addition, we utilized ten SSR molecular markers to investigate the genetic stability in embryogenic tissues during long-term subculturing. No genomic variations were detected in any of the three embryogenic cell lines, which suggests that the observed phenotypic dynamics during subculturing may not be primarily driven by genomic alterations. This study provides novel insights into the dynamics of the long-term culture of embryogenic tissues, laying a foundation for the optimization and application of somatic embryogenesis techniques in L. principis-rupprechtii Mayr and potentially other coniferous species.

Funder

National Natural Science Foundation of China

Key R&D Program of Heibei Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3