Metaheuristics and Transmission Expansion Planning: A Comparative Case Study

Author:

Abdi Hamdi,Moradi MansourORCID,Lumbreras SaraORCID

Abstract

Transmission expansion planning (TEP), the determination of new transmission lines to be added to an existing power network, is a key element in power system planning. Using classical optimization to define the most suitable reinforcements is the most desirable alternative. However, the extent of the under-study problems is growing, because of the uncertainties introduced by renewable generation or electric vehicles (EVs) and the larger sizes under consideration given the trends for higher renewable shares and stronger market integration. This means that classical optimization, even using efficient techniques, such as stochastic decomposition, can have issues when solving large-sized problems. This is compounded by the fact that, in many cases, it is necessary to solve a large number of instances of a problem in order to incorporate further considerations. Thus, it can be interesting to resort to metaheuristics, which can offer quick solutions at the expense of an optimality guarantee. Metaheuristics can even be combined with classical optimization to try to extract the best of both worlds. There is a vast literature that tests individual metaheuristics on specific case studies, but wide comparisons are missing. In this paper, a genetic algorithm (GA), orthogonal crossover based differential evolution (OXDE), grey wolf optimizer (GWO), moth–flame optimization (MFO), exchange market algorithm (EMA), sine cosine algorithm (SCA) optimization and imperialistic competitive algorithm (ICA) are tested and compared. The algorithms are applied to the standard test systems of IEEE 24, and 118 buses. Results indicate that, although all metaheuristics are effective, they have diverging profiles in terms of computational time and finding optimal plans for TEP.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3