Long-Term Multiyear Transmission Expansion Planning in Turkish Power System

Author:

Ova Ahmet1ORCID,Dogan Erdi2ORCID,Demirbas Sevki3ORCID

Affiliation:

1. Turkish Electricity Transmission Corporation, Ankara, Türkiye

2. EPRA Energy, Ankara, Türkiye

3. Electrical and Electronics Engineering, Gazi University, Ankara, Türkiye

Abstract

To sustain the clean energy transition without interruption and to ensure the reliable operation of the transmission system, it is required to have enough additional transmission capacity in the future horizons. The transmission expansion planning (TEP) problem is a core issue in deciding additional transmission capacity in the planning activities. TEP aims to find the best expansion plan while satisfying technical and economic constraints. In this study, a new binary version of the original FBI algorithm called the BFBI (binary forensic-based investigation) algorithm is developed to solve the binary TEP problem. The effectiveness and performance of the developed BFBI are assessed by implementing it in two different test systems: the standard Garver 6-bus test system and the modified 400 kV Turkish grid. Seasonal scenarios are created for 5- and 10-year planning periods to cover all possible generation and load conditions and to assess the impact of the increased share of RES on the grid in the TEP studies conducted for the modified 400 kV Turkish grid created as a bulk realistic grid. The TEP problem is solved by including investment, reliability, and operational costs in two different objective functions for cases while considering the N-1 contingency criterion. The efficacy and robustness of the BFBI algorithm are justified by comparing it with well-known algorithms such as GA and PSO.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3