Author:
Li Zhe,Wu Feng,Ma Huiqiang,Xu Zhanjun,Wang Shaohua
Abstract
Rapid urbanization has triggered significant changes in urban land surface temperature (LST), which in turn affects urban ecosystems and the health of residents. Therefore, exploring the interrelationship between urban development and LST can help optimize the urban thermal environment and promote sustainable development. Based on remote sensing data from 2004–2019 within the sixth ring road of Beijing, this study investigates the spatiotemporal coupling law of night time light (NTL) and LST using an overall coupling model and analyzes the degree of coordination between them using a coordination model. The spatial response law between them was also analyzed using standard deviation ellipses and bivariate spatial autocorrelation. The results show that, from the perspective of spatiotemporal evolution, the spatial distributions of NTL and LST within the sixth ring road of Beijing were closely related from 2004 to 2019, although the overall coupling of NTL and LST was initially decreased and then continuously increased. From the perspective of coordination types, the main types of coordination between NTL and LST deteriorated over time. The increase in LST lagged behind NTL from 2004 to 2009 (heating hysteresis type), while LST increased ahead of NTL from 2014 to 2019 (heating advance type). This suggests that urban development became less efficient, while LST increases became more significant. In terms of correlation, NTL and LST showed significant positive correlation and spatial positive correlation; the correlation coefficient first decreased significantly and then continued to increase. From 2004 to 2009, the temperature increase caused by urbanization was suppressed due to the 2008 Beijing Olympics and related ecological protection policies, resulting in a significant decrease in the correlation coefficient between NTL and LST. From 2009 to 2019, short-term measures taken by Beijing during the Olympic Games were no longer effective, and the opposition between urban development and related policies made the policies increasingly less effective, thereby increasing the correlation coefficient between NTL and LST, and the increase in LST was more significant. This will greatly affect the urban ecological environment and residents’ health and make the previous government investment to suppress the temperature increase all in vain. This study can provide theoretical and practical support for the development of thermal environment optimization schemes and LST mitigation strategies in Beijing and other cities.
Funder
Basic Research Program of Shanxi Province
the National Natural Science Foundation of China
Natural Science Foundation of Guizhou Province
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献