Spatiotemporal Evolution and Relationship between Night Time Light and Land Surface Temperature: A Case Study of Beijing, China

Author:

Li Zhe,Wu Feng,Ma Huiqiang,Xu Zhanjun,Wang Shaohua

Abstract

Rapid urbanization has triggered significant changes in urban land surface temperature (LST), which in turn affects urban ecosystems and the health of residents. Therefore, exploring the interrelationship between urban development and LST can help optimize the urban thermal environment and promote sustainable development. Based on remote sensing data from 2004–2019 within the sixth ring road of Beijing, this study investigates the spatiotemporal coupling law of night time light (NTL) and LST using an overall coupling model and analyzes the degree of coordination between them using a coordination model. The spatial response law between them was also analyzed using standard deviation ellipses and bivariate spatial autocorrelation. The results show that, from the perspective of spatiotemporal evolution, the spatial distributions of NTL and LST within the sixth ring road of Beijing were closely related from 2004 to 2019, although the overall coupling of NTL and LST was initially decreased and then continuously increased. From the perspective of coordination types, the main types of coordination between NTL and LST deteriorated over time. The increase in LST lagged behind NTL from 2004 to 2009 (heating hysteresis type), while LST increased ahead of NTL from 2014 to 2019 (heating advance type). This suggests that urban development became less efficient, while LST increases became more significant. In terms of correlation, NTL and LST showed significant positive correlation and spatial positive correlation; the correlation coefficient first decreased significantly and then continued to increase. From 2004 to 2009, the temperature increase caused by urbanization was suppressed due to the 2008 Beijing Olympics and related ecological protection policies, resulting in a significant decrease in the correlation coefficient between NTL and LST. From 2009 to 2019, short-term measures taken by Beijing during the Olympic Games were no longer effective, and the opposition between urban development and related policies made the policies increasingly less effective, thereby increasing the correlation coefficient between NTL and LST, and the increase in LST was more significant. This will greatly affect the urban ecological environment and residents’ health and make the previous government investment to suppress the temperature increase all in vain. This study can provide theoretical and practical support for the development of thermal environment optimization schemes and LST mitigation strategies in Beijing and other cities.

Funder

Basic Research Program of Shanxi Province

the National Natural Science Foundation of China

Natural Science Foundation of Guizhou Province

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3