India’s Greening Trend Seems to Slow Down. What Does Aerosol Have to Do with It?

Author:

Hari ManojORCID,Tyagi BhishmaORCID

Abstract

Multiple drivers perturb the terrestrial carbon cycle, which ultimately reshapes the fertilization of carbon dioxide (CO2) and reorientates the climate. One such driver is atmospheric aerosols, which cascade the ecosystem’s productivity in a large proportionality. Investigating this relation is non-conventional and limited across the globe. With the abundance of heterogenetic terrestrial ecosystems, India’s primary productivity has a large proportion of the global carbon balance. Under climate change stress, India’s unique spatial and climatological features perturb atmospheric aerosols from natural sources to anthropogenic sources. In light of that, this study utilizes the Carnegie–Ames Stanford Approach (CASA) model to elucidate the consequence by examining the potential effect of aerosol load on the ecosystem productivity (Net Primary Production; NPP) for various agroclimatic zones of India from 2001–2020. CASA reveals a negative decadal amplitude with an overall increase in the NPP trend. In contrast, aerosol loadings from MODIS highlight the increasing trend, with definite seasonal intensities. Employing the CASA model and earth observations, the study highlights the increase in NPP in forest-based ecosystems due to relatively lower aerosols and higher diffuse radiation. Critically, strong dampening of NPP was observed in the agroecological and sparse vegetation zones inferring that the aerosol loadings affect the primary productivity by affecting the photosynthesis of canopy architecture. Spatial sensitivity zones across different ecological regions result in a non-homogenous response because of different phenological and canopy architecture that is mediated by the radiation intensities. Based on the analysis, the study infers that AOD positively influences the canopy-scale photosynthesis by diffuse radiation, which promotes NPP but is less likely for the crop canopy ecosystems. Barring the limitations, enhancement of NPP in the forest ecosystems offset the demand for carbon sink in the agroecosystems. Findings from this study reveal that a more precise provenance of aerosol effects on carbon fluxes is required to understand the uncertainties in the terrestrial carbon cycle.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3