Unveiling the Transparency of Prediction Models for Spatial PM2.5 over Singapore: Comparison of Different Machine Learning Approaches with eXplainable Artificial Intelligence

Author:

Sunder M. S. Shyam1,Tikkiwal Vinay Anand2,Kumar Arun3ORCID,Tyagi Bhishma1ORCID

Affiliation:

1. Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Rourkela 769008, India

2. Department of Electronics Engineering, Jaypee Institute of Information Technology, Noida 201309, India

3. Department of Computer Science and Engineering, National Institute of Technology Rourkela, Rourkela 769008, India

Abstract

Aerosols play a crucial role in the climate system due to direct and indirect effects, such as scattering and absorbing radiant energy. They also have adverse effects on visibility and human health. Humans are exposed to fine PM2.5, which has adverse health impacts related to cardiovascular and respiratory-related diseases. Long-term trends in PM concentrations are influenced by emissions and meteorological variations, while meteorological factors primarily drive short-term variations. Factors such as vegetation cover, relative humidity, temperature, and wind speed impact the divergence in the PM2.5 concentrations on the surface. Machine learning proved to be a good predictor of air quality. This study focuses on predicting PM2.5 with these parameters as input for spatial and temporal information. The work analyzes the in situ observations for PM2.5 over Singapore for seven years (2014–2021) at five locations, and these datasets are used for spatial prediction of PM2.5. The study aims to provide a novel framework based on temporal-based prediction using Random Forest (RF), Gradient Boosting (GB) regression, and Tree-based Pipeline Optimization Tool (TP) Auto ML works based on meta-heuristic via genetic algorithm. TP produced reasonable Global Performance Index values; 7.4 was the highest GPI value in August 2016, and the lowest was −0.6 in June 2019. This indicates the positive performance of the TP model; even the negative values are less than other models, denoting less pessimistic predictions. The outcomes are explained with the eXplainable Artificial Intelligence (XAI) techniques which help to investigate the fidelity of feature importance of the machine learning models to extract information regarding the rhythmic shift of the PM2.5 pattern.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3