Opposing Roles for the α Isoform of the Catalytic Subunit of Protein Phosphatase 1 in Inside–Out and Outside–In Integrin Signaling in Murine Platelets

Author:

Khatlani Tanvir12ORCID,Pradhan Subhashree12,Langlois Kimberly23,Subramanyam Deepika12,Rumbaut Rolando E.23ORCID,Vijayan K. Vinod12

Affiliation:

1. Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA

2. Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA

3. Pulmonary Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA

Abstract

Platelet activation during hemostasis and thrombosis is facilitated by agonist-induced inside–out and integrin αIIbβ3-initiated outside–in signaling via protein kinases and phosphatases. Pharmacological inhibitor studies suggest that the serine/threonine protein phosphatase 1 (PP1) promotes platelet activation. However, since phosphatase inhibitors block all the isoforms of the catalytic subunit of PP1 (PP1c), the role of specific PP1c isoform in platelet signaling remains unclear. Here, we employed a platelet-specific PP1cα−/− mice to explore the contribution of a major PP1 isoform in platelet functions. Loss of PP1cα moderately decreased activation of integrin αIIbβ3, binding of soluble fibrinogen, and aggregation to low-dose thrombin, ADP, and collagen. In contrast, PP1cα−/− platelets displayed increased adhesion to immobilized fibrinogen, fibrin clot retraction, and thrombus formation on immobilized collagen. Mechanistically, post-fibrinogen engagement potentiated p38 mitogen-activated protein kinase (MAPK) activation in PP1cα−/− platelets and the p38 inhibitor blocked the increased integrin-mediated outside–in signaling function. Tail bleeding time and light-dye injury-induced microvascular thrombosis in the cremaster venules and arterioles were not altered in PP1cα−/− mice. Thus, PP1cα displays pleiotropic signaling in platelets as it amplifies agonist-induced signaling and attenuates integrin-mediated signaling with no impact on hemostasis and thrombosis.

Funder

NIH

Department of Veterans Affairs Biomedical Laboratory Research & Development Service

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3