An Improved Rapidly-Exploring Random Trees Algorithm Combining Parent Point Priority Determination Strategy and Real-Time Optimization Strategy for Path Planning

Author:

Tian Lijing,Zhang Zhizhuo,Zheng Change,Tian Ye,Zhao Yuchen,Wang Zhongyu,Qin Yihan

Abstract

In order to solve the problems of long path planning time and large number of redundant points in the rapidly-exploring random trees algorithm, this paper proposed an improved algorithm based on the parent point priority determination strategy and the real-time optimization strategy to optimize the rapidly-exploring random trees algorithm. First, in order to shorten the path-planning time, the parent point is determined before generating a new point, which eliminates the complicated process of traversing the random tree to search the parent point when generating a new point. Second, a real-time optimization strategy is combined, whose core idea is to compare the distance of a new point, its parent point, and two ancestor points to the target point when a new point is generated, choosing the new point that is helpful for the growth of the random tree to reduce the number of redundant points. Simulation results of 3-dimensional path planning showed that the success rate of the proposed algorithm, which combines the strategy of parent point priority determination and the strategy of real-time optimization, was close to 100%. Compared with the rapidly-exploring random trees algorithm, the number of points was reduced by more than 93.25%, the path planning time was reduced by more than 91.49%, and the path length was reduced by more than 7.88%. The IRB1410 manipulator was used to build a test platform in a laboratory environment. The path obtained by the proposed algorithm enables the manipulator to safely avoid obstacles to reach the target point. The conclusion can be made that the proposed strategy has a better performance on optimizing the success rate, the number of points, the planning time, and the path length.

Funder

National Natural Science Foundation of China

Beijing Undergraduates' Innovative and Entrepreneurial Training Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3