Abstract
Damage to abdominal wall integrity occurs in accidents, infection and herniation. Repairing the hernia remains to be one of the most recurrent common surgical techniques. Supercritical carbon dioxide (SCCO2) was used to decellularize porcine skin to manufacture acellular dermal matrix (ADM) for the reparation of full-thickness abdominal wall defects and hernia. The ADM produced by SCCO2 is chemically equivalent and biocompatible with human skin. The ADM was characterized by hematoxylin and eosin (H&E) staining, 4,6-Diamidino-2-phenylindole, dihydrochloride (DAPI) staining, residual deoxyribonucleic acid (DNA) contents and alpha-galactosidase (α-gal staining), to ensure the complete decellularization of ADM. The ADM mechanical strength was tested following the repair of full-thickness abdominal wall defects (4 × 4 cm) created on the left and right sides in the anterior abdominal wall of New Zealand White rabbits. The ADM produced by SCCO2 technology revealed complete decellularization, as characterized by H&E, DAPI staining, DNA contents (average of 26.92 ng/mg) and α-gal staining. In addition, ADM exhibited excellent performance in the repair of full-thickness abdominal wall defects. Furthermore, the mechanical strength of the reconstructed abdominal wall after using ADM was significantly (p < 0.05) increased in suture retention strength (30.42 ± 1.23 N), tear strength (63.45 ± 7.64 N and 37.34 ± 11.72 N) and burst strength (153.92 ± 20.39 N) as compared to the suture retention (13.33 ± 5.05 N), tear strength (6.83 ± 0.40 N and 15.27 ± 3.46 N) and burst strength (71.77 ± 18.09 N) when the predicate device materials were concomitantly tested. However, the efficacy in hernia reconstruction of ADM is substantially equivalent to that of predicate material in both macroscopic and microscopic observations. To conclude, ADM manufactured by SCCO2 technology revealed good biocompatibility and excellent mechanical strength in post-repair of full-thickness abdominal wall defects in the rabbit hernia model.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference37 articles.
1. Hernias: Inguinal and incisional;Kingsnorth;Lancet,2003
2. A comparison of suture repair with mesh repair for incisional hernia;Luijendijk;N. Engl. J. Med.,2000
3. Ventral Hernia Working Group, Breuing, K., Butler, C., Ferzoso, S., Franz, M., Hultman, C.S., Kilbridge, J.F., Rosen, M., Silverman, R.P., and Vargo, D. (2010). Incisional ventral hernias: Review of the literature and recommendations regarding the grading and technique or repair. Surgery, 148, 544.
4. The New Zealand White Rabbit as a Model for Preclinical Studies Addressing Tissue Repair at the Level of the Abdominal Wall;Pascual;Tissue Eng. Part C Methods,2017
5. Engineered Biopolymeric Scaffolds for Chronic Wound Healing;Dickinson;Front. Physiol.,2016
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献