Neural Network Model for Permeability Prediction from Reservoir Well Logs

Author:

Abdel Azim RedaORCID,Aljehani AbdulrahmanORCID

Abstract

The estimation of the formation permeability is considered a vital process in assessing reservoir deliverability. The prediction of such a rock property with the use of the minimum number of inputs is mandatory. In general, porosity and permeability are independent rock petrophysical properties. Despite these observations, theoretical relationships have been proposed, such as that by the Kozeny–Carmen theory. This theory, however, treats a highly complex porous medium in a very simple manner. Hence, this study proposes a comprehensive ANN model based on the back propagation learning algorithm using the FORTRAN language to predict the formation permeability from available well logs. The proposed ANN model uses a weight visualization curve technique to optimize the number of hidden neurons and layers. Approximately 500 core data points were collected to generate the model. These data, including gamma ray, sonic travel time, and bulk density, were collected from numerous wells drilled in the Western Desert and Gulf areas of Egypt. The results show that in order to predict the permeability accurately, the data set must be divided into 60% for training, 20% for testing, and 20% for validation with 25 neurons. The results yielded a correlation coefficient (R2) of 98% for the training and 96.5% for the testing, with an average absolute percent relative error (AAPRE) of 2.4%. To validate the ANN model, two published correlations (i.e., the dual water and Timur’s models) for calculating permeability were used to achieve the target. In addition, the results show that the ANN model had the lowest mean square error (MSE) of 0.035 and AAPRE of 0.024, while the dual water model yielded the highest MSE of 0.84 and APPRE of 0.645 compared to the core data. These results indicate that the proposed ANN model is robust and has strong capability of predicting the rock permeability using the minimum number of wireline log data.

Funder

Institutional Fund Projects

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3