Optimization of neural-network model using a meta-heuristic algorithm for the estimation of dynamic Poisson’s ratio of selected rock types

Author:

Waqas Umer,Ahmed Muhammad Farooq,Rashid Hafiz Muhammad Awais,Al-Atroush Mohamed Ezzat

Abstract

AbstractThis research focuses on the predictive modeling between rocks' dynamic properties and the optimization of neural network models. For this purpose, the rocks' dynamic properties were measured in terms of quality factor (Q), resonance frequency (FR), acoustic impedance (Z), oscillation decay factor (α), and dynamic Poisson’s ratio (v). Rock samples were tested in both longitudinal and torsion modes. Their ratios were taken to reduce data variability and make them dimensionless for analysis. Results showed that with the increase in excitation frequencies, the stiffness of the rocks got increased because of the plastic deformation of pre-existing cracks and then started to decrease due to the development of new microcracks. After the evaluation of the rocks’ dynamic behavior, the v was estimated by the prediction modeling. Overall, 15 models were developed by using the backpropagation neural network algorithms including feed-forward, cascade-forward, and Elman. Among all models, the feed-forward model with 40 neurons was considered as best one due to its comparatively good performance in the learning and validation phases. The value of the coefficient of determination (R2 = 0.797) for the feed-forward model was found higher than the rest of the models. To further improve its quality, the model was optimized using the meta-heuristic algorithm (i.e. particle swarm optimizer). The optimizer ameliorated its R2 values from 0.797 to 0.954. The outcomes of this study exhibit the effective utilization of a meta-heuristic algorithm to improve model quality that can be used as a reference to solve several problems regarding data modeling, pattern recognition, data classification, etc.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3