Author:
Wang Tengfei,Chen Ming,Xu Yun,Weng Dingwei,Yang Zhanwei,Liu Zhaolong,Ma Zeyuan,Jiang Hao
Abstract
The multifracture competitive growth from a horizontal well is an essential issue in multi-cluster fracturing design. In recent years, extremely limited entry (ELE) fracturing has been implemented to promote uniform multifracture growth. However, the mechanism of multifracture growth and ELE design remain unclear. Based on the planar three-dimensional multifracture propagation model, a multi-cluster horizontal well fracturing model that considers ELE design has been developed. The model considers flow in the wellbore and fluid filtration loss in the fracture. The simulator enables the simulation and analysis of non-uniform in situ stress, filtration loss, and fracture properties. Using this program, we simulated the propagation process of multiple clusters of fractures in ELE fracturing of horizontal wells. The results show the following: The perforation friction in the ELE fracturing can counteract the difference in fluid allocation caused by stress interference, allowing all clusters of perforations to have even fluid allocation but to differ significantly in fracture geometry. The in situ stress profile and 3D fracture stress interference determine the fracture geometry, and the fracture of the middle cluster could cross through the layer with relatively higher in situ stress, resulting in a decrease in effective fracture area in the pay zone. Furthermore, an increase in perforation diameter causes the flow-limiting effect of the perforations to decrease. The fluid volumes entering different clusters of perforations become less uniform. The difference in fracture toughness within a perforated stage has a minor influence on the fluid allocation between different clusters, while the in situ stress distribution within a perforated stage has a significant impact on the fluid allocation between different perforation clusters in the stage. Fractures preferentially propagate at the perforation points with lower in situ stress and stress interference. This study can be helpful to understand multifracture competitive growth and the optimization of ELE fracturing design.
Funder
Shandong Provincial Natural Science Foundation
Natural Science Foundation of China
major project of CNPC
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献