Integrating DAS, Treatment Pressure Analysis and Video-Based Perforation Imaging to Evaluate Limited Entry Treatment Effectiveness

Author:

Cramer David1,Friehauf Kyle1,Roberts Glyn2,Whittaker Jeff2

Affiliation:

1. ConocoPhillips

2. EV

Abstract

Abstract The primary objectives of perforating a lengthy cased-and-cemented wellbore section for fracture stimulation are to 1.) enable extensive communication with the reservoir and 2.) control the allocation of fluid and proppant into multiple intervals as efficiently as possible during fracturing treatments. Simultaneously treating multiple intervals reduces the number of fracturing stages required, thus reducing treatment cost. One way to control the allocation is to use limited entry perforating. Limited entry is the process of either limiting the number of perforations or reducing the size of the perforation entry-hole to achieve significant perforation friction pressure during a hydraulic fracturing treatment. Perforation friction establishes a backpressure in the wellbore that helps to allocate flow among multiple, simultaneously-treated perforation intervals/clusters that have differing fracture propagation pressures. Execution and optimization of limited entry perforating requires awareness of the factors that can affect performance. This paper presents a case study of plug-and-perf horizontal well treatments in an unconventional shale play in which various diagnostic methods were used to better understand and quantify these factors. Within the case study, three types of perforation evaluation diagnostics were implemented: 1.) injection step-down tests and pressure analysis of the fracturing treatments, 2.) video-based perforation imaging and 3.) distributed acoustic sensing (DAS). Injection step-down tests indicated that all perforations were initially accepting fluid. However, history-matched solutions of step-down tests are non-unique due to multiple variables involved in the calculations and uncertainty regarding the exact initial-perforation conditions. Surface pressure analysis of the main fracturing treatments indicated that in certain cases, several perforations were not accepting fluid and proppant (slurry) by the end of the job. The number of inactive perforations was typically equivalent to the amount contained in two clusters. Video-based imaging highlighted several trends and concepts for perforating. Zero-phase perforating toward the high side of the well was advantageous for obtaining quality images and relatively consistent perforation dimensions. A large majority of perforations showed unambiguous qualitative evidence of significant proppant entry. Even though images captured were post-stimulation, it was apparent that initial perforation dimensions were significantly smaller and gun phasing had a more significant effect than originally predicted. Evaluation of the erosion patterns on the perforations showed a positional bias where for a given frac stage, perforations in clusters nearest the heel of the well were more eroded than perforations in clusters nearest the toe of the well. Distributed acoustic sensing (DAS) analysis confirmed the conclusions of the surface pressure analysis. In the example provided, the data showed all clusters accepting fluid during the step-down test. Later in the stage, the DAS data showed two clusters not accepting fluid at different times of the stage. DAS analysis was able to confirm the timing and position of the two clusters. The DAS data also showed a positional bias, allocating more slurry volume to clusters nearest the heel of the well. However, DAS analysis also showed that changing the number of perforations in a cluster had a larger effect than the positional bias. The staggered perforation design featuring two fewer perforations in the cluster closest to the heel effectively counteracted the positional bias but resulted in diverting too much slurry volume from that cluster. The results also highlight the importance of perforator quality control in terms of perforation hole size. Treating pressure and DAS analysis indicated a particular cluster stopped taking slurry relatively early in the treatment and post-frac imaging dimensioned the hole sizes and revealed they were extremely undersized from the expected hole size. Based on the results of the case study, it was recommended to use a staggered perforation design with more gradual changes. This was verified with modeling using updated parameters which showed that the resulting changes are likely to improve slurry allocation.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3