Abstract
The technology of radial-well-assisted hydraulic fracturing is applied in the stimulation of low-permeability hydrocarbon reservoirs where commercial production cannot be achieved by the conventional fracturing method. Here, a study on the reservoir stimulation effect and the fracture propagation pattern of radial-well-assisted deflagration fracturing was carried out. Based on smooth particle hydrodynamics (SPH), rock mechanics theory, and finite element theory, a numerical model of radial-well-assisted deflagration fracturing was established by integrating the JWL state equation. Research on the effects of the deflagration position, radial well azimuth and horizontal principal stress difference on the fracture propagation was carried out. The results show that the deflagration position, radial well azimuth and horizontal principal stress difference have significant effects on the fracture area in deflagration fracturing. The closer distance from the deflagration position is, the larger the radial well azimuth and the smaller the horizontal stress difference are, leading to a larger fracture area, which is conducive to reservoir stimulation. During fracturing, both shear fractures and tensile fractures are formed. The formation and conversion of shear fractures and tensile fractures are related to the deflagration position, radial well azimuth, horizontal principal stress difference, etc.
Funder
National Natural Science Foundation of China
The Xi’an shiyou University school level youth scientific research and innovation team construction funds in 2018
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献