Improving reservoir permeability by electric pulse controllable shock wave

Author:

Zhu Xinguang,Feng Chun,Cheng PengdaORCID

Abstract

AbstractControllable shock wave (CWS) parameters such as amplitude, operating area and number of operations are easy to control and have received extensive attention as a potential new technology for reservoir permeability enhancement. Based on the continuous-discontinuous element method (CDEM) and considering the coupling mechanism of reservoir deformation, failure, pore seepage and fracture flow, a multiphysical field coupling model of reservoir permeability enhancement under CWS is proposed. Under the fluid–solid coupling condition, the formation and development dynamic process of reservoir fractures are obtained, and the change of reservoir permeability is also obtained. The compression fracture zone, tensile fracture zone and undamaged zone are formed around the wellbore. After repeated impact, the number of fractures is more sensitive to tectonic stress, the fracture aperture is more sensitive to reservoir strength. Different from hydraulic fracturing, a large number of fractures in different directions will appear around the main fracture after repeated impact, forming a complex fracture network similar to spider web, which may be beneficial to improve reservoir permeability. The permeability of reservoirs with different tectonic stresses and strengths increases nonlinearly and monotonicly with repeated impacts. Based on CDEM, the change of reservoir permeability with tectonic stress, strength and impact times is obtained, which is a nonlinear monotonic three-dimensional relationship. Based on that relationship, the parameters of CWS can be controlled to predict the change of reservoir permeability, such as peak pressure, duration, impact times, etc. Therefore, it can optimize the reservoir fracturing scheme and improve the reservoir fracturing efficiency, which has considerable practical significance in engineering.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3