Quantifying Reinforcement-Learning Agent’s Autonomy, Reliance on Memory and Internalisation of the Environment

Author:

Ingel AntiORCID,Makkeh AbdullahORCID,Corcoll OriolORCID,Vicente RaulORCID

Abstract

Intuitively, the level of autonomy of an agent is related to the degree to which the agent’s goals and behaviour are decoupled from the immediate control by the environment. Here, we capitalise on a recent information-theoretic formulation of autonomy and introduce an algorithm for calculating autonomy in a limiting process of time step approaching infinity. We tackle the question of how the autonomy level of an agent changes during training. In particular, in this work, we use the partial information decomposition (PID) framework to monitor the levels of autonomy and environment internalisation of reinforcement-learning (RL) agents. We performed experiments on two environments: a grid world, in which the agent has to collect food, and a repeating-pattern environment, in which the agent has to learn to imitate a sequence of actions by memorising the sequence. PID also allows us to answer how much the agent relies on its internal memory (versus how much it relies on the observations) when transitioning to its next internal state. The experiments show that specific terms of PID strongly correlate with the obtained reward and with the agent’s behaviour against perturbations in the observations.

Funder

Estonian Centre of Excellence in IT

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference43 articles.

1. Reinforcement Learning: An Introduction;Sutton,2018

2. Emergent Tool Use From Multi-Agent Autocurricula;Baker;arXiv,2019

3. Grandmaster level in StarCraft II using multi-agent reinforcement learning

4. Dota 2 with Large Scale Deep Reinforcement Learning;Berner;arXiv,2019

5. Open-Ended Learning Leads to Generally Capable Agents;Stooke;arXiv,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3