Abstract
The prediction of chaotic time series systems has remained a challenging problem in recent decades. A hybrid method using Hankel Alternative View Of Koopman (HAVOK) analysis and machine learning (HAVOK-ML) is developed to predict chaotic time series. HAVOK-ML simulates the time series by reconstructing a closed linear model so as to achieve the purpose of prediction. It decomposes chaotic dynamics into intermittently forced linear systems by HAVOK analysis and estimates the external intermittently forcing term using machine learning. The prediction performance evaluations confirm that the proposed method has superior forecasting skills compared with existing prediction methods.
Funder
the National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献