Possibility to Save Water and Energy by Application of Fresh Vegetables to Produce Supplemented Potato-Based Snack Pellets

Author:

Lisiecka Katarzyna,Wójtowicz AgnieszkaORCID

Abstract

The aim of the study was to examine the effect of fresh vegetable addition on processing efficiency, and to ascertain the energy and water consumption during production of potato-based snack pellets. The extrusion-cooking process with a modified single screw extruder was applied at variable screw speeds and amounts of vegetable additives. A mixture of potato flakes, potato grits and starch was used as a basic recipe. The potato composition was supplemented with fresh pulp of onion, leek, kale and carrot in amounts of 2.5–30.0% as replacement of a related amount of potato starch. The water consumption, as well as processing indicators: the production efficiency, the specific mechanical energy (SME), and the total SME requirements during snack pellets processing at the laboratory scale were evaluated. As a result of this work, we found that the amount of applied vegetable additives had little impact on both processing efficiency and SME depending on the screw speeds applied. Moreover, we saw increased processing efficiency with increased screw speed during extrusion. Of particular note, maximum value of processing efficiency was observed if fresh onion was used as an additive at the highest speed screw. Furthermore, the lowest specific mechanical energy consumption was noted for extrudates supplemented with fresh onion addition processed at the lowest screw speed. The most important limiting of water consumption during processing without negative effects on processing efficiency and quality of the final snack pellets was observed if 20% to 30% of fresh vegetables were used in the recipe. We believe that application of fresh vegetable pulp limited the energy requirements by mitigating the drying process of additives.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3