Selecting the Optimal Micro-Grid Planning Program Using a Novel Multi-Criteria Decision Making Model Based on Grey Cumulative Prospect Theory

Author:

Zhao Haoran,Guo Sen,Zhao Huiru

Abstract

As useful supplements and effective support for large-scale electric power networks, micro-grid systems are the development tendency of future electric power systems. The planning performance of a micro-grid not only affects its security, reliability and economy, but also has a profound influence on the stable operation of large-scale electric power networks with the increasing penetration of micro-grids. Hence, studies related to micro-grid planning program evaluation are of great significance. This paper established a novel multi-criteria decision making (MCDM) model combining the best-worst method (BWM), the entropy weighting approach, and grey cumulative prospect theory for optimum selection of micro-grid planning programs. Firstly, an evaluation index system containing 18 sub-criteria was built from the perspectives of economy, electricity supply reliability and environmental protection. Secondly, the weights of sub-criteria were calculated integrating the subjective weights judged by the BWM and the objective weights computed by the entropy weighting method. Then, the cumulative prospect theory (CPT) combined with grey theory was employed to select the optimal micro-grid planning program. The empirical result indicates that the program with 100 kWp photovoltaic power generation unit, 200 kW wind power generation unit and 600 kWh NaS battery energy storage system is the optimal micro-grid planning program. To verify the robustness of obtained result, a sensitivity analysis related to values change of parameters under different risk preferences was conducted, and the result indicates that the selected optimal micro-grid planning program will not be influenced by various risk preferences of decision makers (DMs) and investors. The novel MCDM proposed in this paper is applicable and feasible in the micro-grid planning programs evaluation and selection.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3