The Geometry Effect of Cathode/Anode Areas Ratio on Electrochemical Performance of Button Fuel Cell Using Mixed Conducting Materials

Author:

Chen Daifen,Hu Biao,Ding Kai,Yan Cheng,Lu Liu

Abstract

Intermediate temperature (IT) fuel cells using mixed conducting materials have been reported by many researchers by adopting different compositions, microstructures, manufacture processes and testing conditions. Most iop-Vop relationships of these button electrochemical devices are experimentally achieved based on anode or cathode surface area (i.e., Aan≠Aca). In this paper, a 3D multi-physics model for a typical IT solid oxide fuel cell (SOFC) that carefully considers detail electrochemical reaction, electric leakage, and e−, ion and gas transporting coupling processes has been developed and verified to study the effect of Aca/Aan on button cell iop-Vop performance. The result shows that the over zone of the larger electrode can enhance charges and gas transport capacities within a limited scale of only 0.03 cm. The over electrode zone exceed this width would be inactive. Thus, the active zone of button fuel cell is restricted within the smaller electrode area min(Aan, Aca) due to the relative large disc radius and thin component layer. For a specified Vop, evaluating the responded iop by dividing output current Iop with min(Aan, Aca) for a larger value is reasonable to present real performance in the current device scale of cm. However, while the geometry of button cells or other electrochemical devices approach the scale less than 100 μm, the effect of over electrode zone on electrochemical performance should not be ignored.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3