Fabrication of Micro-Patterned Surface for Pool-boiling Enhancement by Using Powder Injection Molding Process

Author:

Cho Hanlyun,Godinez JuanORCID,Han Jun Sae,Fadda Dani,You Seung Mun,Lee Jungho,Park Seong Jin

Abstract

In this study, two kinds of copper micro-patterned surfaces with different heights were fabricated by using a powder injection molding (PIM) process. The micro-pattern’s size was 100 μm, and the gap size was 50 μm. The short micro-pattern’s height was 100 μm, and the height of the tall one was 380 μm. A copper powder and wax-polymer-based binder system was used to fabricate the micro-patterned surfaces. The critical heat flux (CHF) and heat transfer coefficient (HTC) during pool-boiling tests were measured with the micro-patterned surfaces and a reference plain copper surface. The CHF of short and tall micro-patterned surfaces were 1434 and 1444 kW/m2, respectively, and the plain copper surface’s CHF was 1191 kW/m2. The HTC of the plain copper surface and the PIM surface with short and tall micro-patterned surfaces were similar in value up to a heat flux 1000 kW/m2. Beyond that value, the plain surface quickly reached its CHF, while the HTC of the short micro-patterned surface achieved higher values than that of the tall micro-patterned surface. At CHF, the maximum values of HTC for the short micro-pattern, tall micro-pattern, and the plain copper surface were 68, 58, and 57 kW/m2 K.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3