Nanosecond Laser-Textured Copper Surfaces Hydrophobized with Self-Assembled Monolayers for Enhanced Pool Boiling Heat Transfer

Author:

Može MaticORCID,Zupančič MatevžORCID,Steinbücher Miha,Golobič IztokORCID,Gjerkeš Henrik

Abstract

Increased cooling requirements of many compact systems involving high heat fluxes demand the development of high-performance cooling techniques including immersion cooling utilizing pool boiling. This study presents the functionalization of copper surfaces to create interfaces for enhanced pool boiling heat transfer. Three types of surface structures including a crosshatch pattern, shallow channels and deep channels were developed using nanosecond laser texturing to modify the surface micro- and nanomorphology. Each type of surface structure was tested in the as-prepared superhydrophilic state and superhydrophobic state following hydrophobization, achieved through the application of a nanoscale self-assembled monolayer of a fluorinated silane. Boiling performance evaluation was conducted through three consecutive runs under saturated conditions at atmospheric pressure utilizing water as the coolant. All functionalized surfaces exhibited enhanced boiling heat transfer performance in comparison with an untreated reference. The highest critical heat flux of 1697 kW m−2 was achieved on the hydrophobized surface with shallow channels. The highest heat transfer coefficient of 291.4 kW m−2 K−1 was recorded on the hydrophobized surface with deep channels at CHF incipience, which represents a 775% enhancement over the highest values recorded on the untreated reference. Surface microstructure was identified as the key reason for enhanced heat transfer parameters. Despite large differences in surface wettability, hydrophobized surfaces exhibited comparable (or even higher) CHF values in comparison with their hydrophilic counterparts, which are traditionally considered as more favorable for achieving high CHF values. A significant reduction in bubble departure diameter was observed on the hydrophobized surface with deep channels and is attributed to effective vapor entrapment, which is pointed out as a major contributing reason behind the observed extreme boiling heat transfer performance.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3