Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid

Author:

Anderson T. M.1,Mudawar I.1

Affiliation:

1. Boiling and Two-Phase Flow Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

An experimental study of boiling heat transfer from a simulated microelectronic component immersed in a stagnant pool of the dielectric Fluorinert (FC-72) is presented. Various enhancement surfaces were attached to an electrically heated copper calorimeter bar having a vertically oriented heat transfer surface area of 12.7×12.7 mm2. A number of enhancement schemes aimed at a reduction of the incipience temperature overshoot were tested, employing various arrangements of fins, studs, grooves, and vapor-trapping cavities. Atmospheric pressure testing revealed a variation in the magnitude of boiling curve incipience temperature excursion as a function of both macro- and microcharacterization of the surface geometry and initial conditions (pressure and temperature history) prior to boiling. Increased incipience temperatures accompanied prolonged periods of nonboiling. It is assumed that this is due to vapor embryos within surface cavities collapsing to smaller radii. Large artificially created cavities (0.3 mm diameter) were found incapable of maintaining a stable vapor embryo for time periods greater than 10 min. In comparison to flat surfaces, low-profile surface geometries having a structure scale of the order of one bubble departure diameter resulted in significant enhancement of nucleate boiling while drilled surfaces had minimal effectiveness. Surface finish and artificial cavities had no effect on CHF, but levels of critical heat flux computed on base area were strongly dependent on macrogeometry, due in part to increased surface area.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3