Phenomena Occurring upon the Sintering of a Mixture of Yttria–Zirconia Nanometric Powder and Sub-Micrometric Pure Zirconia Powder

Author:

Wojteczko KamilORCID,Pędzich ZbigniewORCID,Zientara Dariusz,Berent KatarzynaORCID,Haberko Krzysztof

Abstract

Mixtures of powders essentially differing in their particle morphology and size were applied to prepare polycrystals in a Y2O3-ZrO2 system. An yttria–zirconia solid solution nanometric powder with a Y2O3 concentration of 3.5% was prepared by subjecting co-precipitated gels to hydrothermal treatment at 240 °C. The crystallization occurred in distilled water. The pure zirconia powders composed of elongated and sub-micrometer size particles were also manufactured through the hydrothermal treatment of pure zirconia gel, although in this case, the process took place in the NaOH solution. Mixtures of the two kinds of powder were prepared so as to produce a mean composition corresponding to an yttria concentration of 3 mol%. Compacts of this powder mixture were sintered, and changes in phase composition vs. temperature were studied using X-ray diffraction. The dilatometry measurements revealed the behavior of the powder compact during sintering. The polished surfaces revealed the microstructure of the resulting polycrystal. Additionally, the electron back scattering diffraction technique (EBSD) allowed us to identify symmetry between the observed grains. Hardness, fracture toughness, and mechanical strength measurements were also performed.

Funder

National Science Center

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3