Abstract
This paper analyses the radiance reflectance modelling of a sea area and the case of a water column polluted with an oil emulsion in relation to various depths of the occurrence of an oil-in-water emulsion in all azimuth and zenith angles. For the radiance reflectance modelling, the simulation of large numbers of solar photons in water was performed using a Monte Carlo simulation. For the simulations, the optical properties of seawater for the open sea typical of the southern Baltic Sea were used and Petrobaltic-type crude oil (extracted in the Baltic Sea) was added. Oil pollution in the sea was considered for oil droplet concentrations of 10 ppm, which were optically represented by spectral waveforms of absorption and scattering coefficients, as well as by angular light scattering distribution determined using the Mie theory. The results of the radiance reflectance modelling in the whole spectrum of both angles, azimuth and zenith, allowed us to select 555 nm as the optimal wavelength for oil emulsion detection. Moreover, the parameter contrast was defined and determined using radiance reflectance results for eight light wavelengths in the range of 412-676 nm. The contrast is discussed in relation to the various thicknesses of polluted water layers. Changes in contrast for a thickness layer 5 m under the sea surface were noted, whereas for thicker layers the contrast remained unchanged.
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献