Snowcover Survey over an Arctic Glacier Forefield: Contribution of Photogrammetry to Identify “Icing” Variability and Processes

Author:

Bernard ÉricORCID,Friedt Jean-MichelORCID,Griselin Madeleine

Abstract

The global climate shift currently underway has significant impacts on both the quality and quantity of snow precipitation. This directly influences the spatial variability of the snowpack as well as cumulative snow height. Contemporary glacier retreat reorganizes periglacial morphology: while the glacier area decreases, the moraine area increases. The latter is becoming a new water storage potential that is almost as important as the glacier itself, but with considerably more complex topography. Hence, this work fills one of the missing variables of the hydrological budget equation of an arctic glacier basin by providing an estimate of the snow water equivalent (SWE) of the moraine contribution. Such a result is achieved by investigating Structure from Motion (SfM) image processing that is applied to pictures collected from an Unmanned Aerial Vehicle (UAV) as a method for producing snow depth maps over the proglacial moraine area. Several UAV campaigns were carried out on a small glacial basin in Spitsbergen (Arctic): the measurements were made at the maximum snow accumulation season (late April), while the reference topography maps were acquired at the end of the hydrological year (late September) when the moraine is mostly free of snow. The snow depth is determined from Digital Surface Model (DSM) subtraction. Utilizing dedicated and natural ground control points for relative positioning of the DSMs, the relative DSM georeferencing with sub-meter accuracy removes the main source of uncertainty when assessing snow depth. For areas where snow is deposited on bare rock surfaces, the correlation between avalanche probe in-situ snow depth measurements and DSM differences is excellent. Differences in ice covered areas between the two measurement techniques are attributed to the different quantities measured: while the former only measures snow accumulation, the latter includes all of the ice accumulation during winter through which the probe cannot penetrate, in addition to the snow cover. When such inconsistencies are observed, icing thicknesses are the source of the discrepancy that is observed between avalanche probe snow cover depth measurements and differences of DSMs.

Funder

Institut Polaire Français Paul Emile Victor

Conseil régional de Bourgogne-Franche-Comté

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3