CO Oxidation over Metal Oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2) Doped CuO-Based Catalysts Supported on Mesoporous Ce0.8Zr0.2O2 with Intensified Low-Temperature Activity

Author:

Cui Yan,Xu Leilei,Chen Mindong,Lv Chufei,Lian Xinbo,Wu Cai-e,Yang Bo,Miao Zhichao,Wang Fagen,Hu XunORCID

Abstract

CuO-based catalysts are usually used for CO oxidation owing to their low cost and excellent catalytic activities. In this study, a series of metal oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2)-doped CuO-based catalysts with mesoporous Ce0.8Zr0.2O2 support were simply prepared by the incipient impregnation method and used directly as catalysts for CO catalytic oxidation. These mesoporous catalysts were systematically characterized by X-ray powder diffraction (XRD), N2 physisorption, transmission electron microscopy (TEM), energy-dispersed spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and H2 temperature programmed reduction (H2-TPR). It was found that the CuO and the dopants were highly dispersed among the mesoporous framework via the incipient impregnation method, and the strong metal framework interaction had been formed. The effects of the types of the dopants and the loading amounts of the dopants on the low-temperature catalytic performances were carefully studied. It was concluded that doped transition metal oxides could regulate the oxygen mobility and reduction ability of catalysts, further improving the catalytic activity. It was also found that the high dispersion of rare earth metal oxides (PrO2, Sm2O3) was able to prevent the thermal sintering and aggregation of CuO-based catalysts during the process of calcination. In addition, their presence also evidently improved the reducibility and significantly reduced the particle size of the CuO active sites for CO oxidation. The results demonstrated that the 15CuO-3Fe2O3/M-Ce80Zr20 catalyst with 3 wt. % of Fe2O3 showed the best low-temperature catalytic activity toward CO oxidation. Overall, the present Fe2O3-doped CuO-based catalysts with mesoporous nanocrystalline Ce0.8Zr0.2O2 solid solution as support were considered a promising series of catalysts for low-temperature CO oxidation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference53 articles.

1. Effect of exhaust emissions on carbon monoxide levels in employees working at indoor car wash facilities;Topacoglu;Hippokratia,2014

2. Suicidal carbon monoxide poisoning has decreased with controls on automobile emissions;Hampson;Undersea Hyperb. Med.,2015

3. Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO 2 Catalyst

4. Theoretical study of CO catalytic oxidation on free and defective graphene-supported Au–Pd bimetallic clusters

5. Surfactant-Assisted Synthesis, Characterizations, and Catalytic Oxidation Mechanisms of the Mesoporous MnOx−CeO2 and Pd/MnOx−CeO2 Catalysts Used for CO and C3H8 Oxidation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3