Designing Highly Efficient Cu2O-CuO Heterojunction CO Oxidation Catalysts: The Roles of the Support Type and Cu2O-CuO Interface Effect

Author:

Zhao Fen,Shi Yiyu,Xu Leilei,Chen Mindong,Xue Yingying,Wu Cai-E,Qiu Jian,Cheng Ge,Xu Jingxin,Hu XunORCID

Abstract

In this work, a series of Cu2O/S (S = α-MnO2, CeO2, ZSM-5, and Fe2O3) supported catalysts with a Cu2O loading amount of 15% were prepared by the facile liquid-phase reduction deposition–precipitation strategy and investigated as CO oxidation catalysts. It was found that the Cu2O/α-MnO2 catalyst exhibits the best catalytic activity for CO oxidation. Additionally, a series of Cu2O-CuO/α-MnO2 heterojunctions with varied proportion of Cu+/Cu2+ were synthesized by further calcining the pristine Cu2O/α-MnO2 catalyst. The ratio of the Cu+/Cu2+ could be facilely regulated by controlling the calcination temperature. It is worth noting that the Cu2O-CuO/α-MnO2-260 catalyst displays the best catalytic performance. Moreover, the kinetic studies manifest that the apparent activation energy could be greatly reduced owing to the excellent redox property and the Cu2O-CuO interface effect. Therefore, the Cu2O-CuO heterojunction catalysts supported on α-MnO2 nanotubes are believed to be the potential catalyst candidates for CO oxidation with advanced performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3