New Insights into the Electrocatalytic Mechanism of Methanol Oxidation on Amorphous Ni-B-Co Nanoparticles in Alkaline Media

Author:

Wu ,Zhang ,Zhang ,Duan ,Li ,Wei ,Liu ,Yuan ,Wang ,Hao

Abstract

Despite an increased interest in sustainable energy conversion systems, there have been limited studies investigating the electrocatalytic reaction mechanism of methanol oxidation on Ni-based amorphous materials in alkaline media. A thorough understanding of such mechanisms would aid in the development of amorphous catalytic materials for methanol oxidation reactions. In the present work, amorphous Ni-B and Ni-B-Co nanoparticles were prepared by a simple chemical reduction, and their electrocatalytic properties were investigated by cyclic voltammetry measurements. The diffusion coefficients (D0) for Ni-B, Ni-B-Co0.02, Ni-B-Co0.05, and Ni-B-Co0.1 nanoparticles were calculated to be 1.28 × 10−9, 2.35 × 10−9, 4.48 × 10−9 and 2.67 × 10−9 cm2 s−1, respectively. The reaction order of methanol in the studied transformation was approximately 0.5 for all studied catalysts, whereas the reaction order of the hydroxide ion was nearly 1. The activation energy (Ea) values of the reaction were also calculated for the Ni-B and Ni-B-Co nanoparticle systems. Based on our kinetic studies, a mechanism for the methanol oxidation reaction was proposed which involved formation of an electrocatalytic layer on the surface of amorphous Ni–B and Ni-B-Co nanoparticles. And methanol and hydroxide ions could diffuse freely through this three-dimensional porous conductive layer.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3