Binary NiCu oxide nanoparticles onto graphite as promoting nanocatalysts for ethanol electro‐oxidation process

Author:

Afify Donia G.1ORCID,Hameed R. M. Abdel1ORCID,Ghayad Ibrahim M.2

Affiliation:

1. Chemistry Department, Faculty of Science Cairo University Giza Egypt

2. Central Metallurgical Research and Development Institute Cairo Egypt

Abstract

A facile and reduced cost fabrication protocol was followed to have a series of nickel oxide nanospecies onto graphite support with introducing varied copper oxide wt.% values (NiCuO/T). The co‐precipitation of metallic hydroxide particles onto carbonaceous surfaces and their subsequent burning at 400°C were sufficient to prepare mixed transition metal oxides. Suitable analysis tools were exploited to fully characterize the obtained nanopowders using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction spectroscopy, X‐ray photoelectron spectroscopy, and energy dispersive X‐ray analysis. Outstanding performances of the formed nanocatalysts for catalyzing ethanol electro‐oxidation reaction were measured especially in presence of 15 wt.% copper oxide content. The onset potential (Eonset) value of alcohol oxidation process was negatively shifted at dispersed NiO nanoparticles onto graphite after doping with copper oxide nanospecies. This promoted activity of prepared nanomaterials could be explained by their increased active sites when binary metallic oxides were incorporated. Electrochemical impedance spectroscopy studies demonstrated much lowered resistances in alkaline solution containing ethanol molecules to ascertain the enhanced behavior of NiCuO/T nanocatalysts. Moreover, their good stability attitude encouraged the application of doped nanomaterials with copper oxide for fuel cells application.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3