Engineering Properties and Optimal Conditions of Cementless Grouting Materials

Author:

Lee JaehyunORCID,Kim GyuyongORCID,Kim Yongro,Mun Kyungju,Nam Jeongsoo

Abstract

This study aims to analyze the engineering properties of cementless grouting materials (CGMs) and derive optimal binder types and compositions that can ensure superior material performance in comparison with ordinary Portland cement (OPC). The presented CGM is an environment-friendly inorganic binder based on ground granulated blast-furnace slag. The material properties of three CGM types with different chemical compositions were evaluated. To assess the possibility of using CGMs in grouting-construction methods, this study followed special grouting-method specifications of the J company in Korea, and tested whether CGM satisfies the performance requirements of a gel time of 20–50 s and homogel strength greater than 2 MPa after 7 days. For OPC and CGM, gel time increased and homogel strength decreased as the water/binder (W/B) ratio of Liquid B increased or as its replacement ratio decreased. Additionally, gel time decreased while homogel strength increased as the absolute weight of the Liquid B binder increased, and a negative correlation was observed between gel time and homogel strength. CGM2 was the optimal binder to ensure excellent material performance compared with OPC. Optimal mixing proportions were 117.8–167.7% W/B ratio, 42.6–56.7% Liquid B volume ratio, and 20.4–43.7 kg binder weight.

Funder

Ministry of Science and ICT

Publisher

MDPI AG

Subject

General Materials Science

Reference40 articles.

1. Ground Improvement;Moseley,2004

2. Effects of Cement–Sodium Silicate System Grout on Tropical Organic Soils

3. Performance characteristics of microfine cement;Clarke;Preprint,1984

4. Chemical Grouting and Soil Stabilization, Revised and Expanded;Karol,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3